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Microbes interact in crowded, complex communities. Microbe-microbe interactions can span an-
tagonistic to cooperative, and can vary between and across microbial species and strains. Differences
in microbe-microbe interactions are critical to structuring coexistence at population scales. For ex-
ample, it is often assumed that stable microbial communities are enabled by cooperative (or neutral)
interactions. However, in recent work, studies of high-density colonies of Vibrio cholerae revealed a
mechanism by which strain-dependent antagonistic interactions enabled coexistence amongst diverse
microbes. Notably, these microbes utilize a proximity-based secretion system to kill individuals of
other types without killing microbes of the same type. Such strain-dependent killing led to the
emergence of distinct patches which grew in size and structure with spatiotemporal dynamics whose
scaling was consistent with ‘Model A’ coarsening. Here, we build upon these findings and ask: to
what extent is mutual killing required to enable the emergence and coarsening of cellular patches? To
do so, we explore a dynamic stochastic spatial game model, focusing our attention on coordination
games, such that individuals do better when playing (i.e., interacting) with individuals of the same
type and do worse when playing with individuals of a different type. Such coordination games in-
clude mutual killing mechanisms as well as cooperative mechanisms. Using this framework, we show
that the emergence of ‘Model A’ coarsening is universal for symmetric, spatial coordination games.
We also show that coarsening is maintained for cases where symmetry is broken, but that strong
asymmetries in interaction payoffs lead to dominance by one type rather than the stable coexistence
of distinct types in coarsening patches. Finally, we derive a PDE equivalent of the spatial stochastic
game, showing how local interactions can modify the reaction components of the underlying PDE
model, and confirming the basis for both the double-well nature of spatial coordination games and
the potential for asymmetric payoffs to disrupt coarsening. Our findings of generic coarsening are
relevant to microbial interactions and potentially to the dynamics of cellular assemblages within
developing multi-cellular organisms. Altogether, this work extends the generality of prior findings
on the link between type-dependent microbial interactions and population structure and suggests a
greater range of interaction mechanisms are likely to lead to the emergence and growth of cellular
groups.

I. INTRODUCTION

Microbes live in dense and diverse communities. As a
result, microbes have evolved a variety of mechanisms to
communicate and interact within and across species. Mi-
crobial interactions are often competitive [1, 2] but they
can also be symbiotic (positive), facilitating protection
against environmental threats, exchanging resources, or
by producing public goods [3, 4]. The valence of micro-
bial interactions can also be contingent on context, e.g.,
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turning from cooperative to antagonistic as strains com-
pete for resources and space [5].

One common consequence of these interactions among
and across different species is the emergence of spatial
structure such as coarsening dynamics, where members of
the same strain and taxa accumulate and form spatially
defined interfaces to non-kin strains over time [6]. Emerg-
ing spatial structures, in return, impact the frequency of
contacts between kin and non-kin members and, thus,
may change the global efficiency of kin or non-kin mi-
crobial interactions over time. Such complex population
dynamics have been studied for a variety of specific sce-
narios. Yet, it remains challenging to compare scenarios
with different interactions due to the lack of a general
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understanding of the dynamics.

The population dynamics in crowded systems of in-
teracting bacterial strains is a direct result of the local
actions taken by individuals. The survival of each strain
depends on the ‘strategy’ they utilize, the interaction in-
tensity (the probability of deploying an interaction), and
the payoff of the interaction. This type of problem is
broadly studied in game theory. Here, we propose a
game-theoretic framework to study the coarsening dy-
namics of an initially random ordered microbial system
leading to coherent patterns of single-strain domains that
can appear in a broad range of ecological contexts.

Specifically, we analyze numerical studies on the spa-
tial dynamics of a two-player game with opponents that
may or may not kill each other. The work is motivated
by recent studies of two-player games of Vibrio cholerae
[7], which can kill each other by injecting toxic effec-
tors on contact. As shown in [7], initially well-mixed
populations of Vibrio strains undergo phase separation
(‘coarsening’) upon mutual killing and clonal reproduc-
tion. Domain formation emerges as cells within genet-
ically uniform groups (locally surrounded by the same
type) no longer risk contact-mediated death. In agree-
ment with numerical simulations, it was further shown
that the phase separation of equal or similar competi-
tors exhibit hallmarks of a universal order-disorder tran-
sition that is part of the ’Model A’ class [7], a universality
class that describes systems lacking conservation and was
originally developed to describe the interaction of atomic
‘spin’ systems [8, 9]. We hypothesized that mutual killing
is only a subset of possible microbial interaction scenar-
ios that phase separate following the universal Model A
transition. We propose an ecologically-based stochastic
game-theoretic framework (interactions can be positive
or negative) to model cooperation (or coordination) with
kin and show that ‘Model A’ coarsening occurs for spa-
tial ecological systems where species have incentives to
coordinate with kin (i.e., via a synergistic interaction).

Our stochastic game model is an individual-based
model involving two players, but where the birth-death
step is decoupled from the game step [10]. First, we
derive transition rules in the mean-field limit and show
that the system converges to the replicator dynamics.
Next, we adapt the same transition rules to study phase
separation in these coordination games in a spatial sys-
tem. Finally, we derive a reaction diffusion equation as
a limit of spatially distributed game systems. Our re-
sults demonstrate that a variety of interaction patterns
in microbial communities can be modeled with the same
game-theoretic framework. Further, we find that coars-
ening is a universal characteristic in coordination games,
where kin members exhibit synergistic interactions, and
even exhibit the same scaling law in the case of symmet-
ric interaction potentials.

II. A GAME-THEORETIC APPROACH

II.1. Stochastic games

We consider a two-player game where the players uti-
lize different strategies 1 and 2. The payoff matrix, A,
can be written as follows

A =

[
a11 a12

a21 a22

]
. (1)

In this game, a focal player with strategy 1 receives a
payoff of a11 or a12 when playing against opponent play-
ers with strategies 1 (kin) or 2 (non-kin), respectively.
Similarly, focal players with strategy 2 receive a payoff
of a21 or a22 when playing against opponent players with
strategies 1 or 2, respectively. The payoff values (aij ’s)
can be any real positive or negative number. Here we use
the convention that in a biological context, a negative
payoff value can lead to death and that a positive payoff
value can lead to reproduction. Diagonal elements in the
matrix A define intra-specific interactions, i.e. those that
occur between individuals of the same species, while off-
diagonal elements define inter-specific interactions that
occur between members across species. Throughout, we
focus our analysis on the case where A belongs to the
class of coordination games, that is, where a11 > a21 and
a22 > a12.

The community dynamics in the spatial system
emerges from the accumulation of local birth and death
events. Consider a community with N members, with
a population size N1 of players with strategy 1 and a
population size N2 of players with strategy 2 such that
N = N1 + N2. Further, consider a continuous-time
birth-death process {Ni(t), t ≥ 0} taking on values in
S = {0, 1, ..., N}, where Ni(t) is the number of players
with strategy i = 1, 2 at time t. At any given time t ≥ 0,
the focal player with strategy i plays a game against an
opponent with strategy j. When aij > 0, the focal player
reproduces and replaces a randomly chosen individual
with an offspring at rate aij ; when aij < 0, the focal
player dies and is replaced by a randomly chosen indi-
vidual at rate |aij |.

In Appendix A, we derive the mean field dynamics for
the frequency of player 1, x := N1/N as N → ∞, from
the master equation,

ẋ = x(1− x) [(a11 − a21)x− (a22 − a12) (1− x)] , (2)

where ẋ denotes the time derivative of x. The replicator
dynamics is recovered from the individual game rules.
The first-order system in Eq. 2 can be rewritten as a
gradient system, ẋ = −dV/dx with the interaction po-
tential V (x). Coordination games, i.e., a11 > a21 and
a22 > a12, lead to a double-well potential with two local
minima of V (x) at x = 0, 1 that correspond to locally sta-
ble equilibria, and one local maximum at x = xm ∈ (0, 1)
corresponding to an unstable equilibrium, a mixed Nash
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equilibrium, given by

xm =
a22 − a12

(a11 − a21) + (a22 − a12)
. (3)

Therefore, the double-well potential V (x) pro-
vides a bistable system, and it is symmetric if
(a11 − a21) = (a22 − a12), where xm = 1/2.

II.2. Spatial, stochastic games

To study the pattern formation of coordination games
in a spatial environment, we applied the stochastic games
formalism (see Sect. II II.1) on a two-dimensional fully oc-
cupied lattice with length L per dimension and N = L2

sites. We apply periodic boundary conditions, i.e., the
system is a torus in Z2. Each site x ∈ Z2 is occupied
by a player with either strategy 1 or strategy 2. In this
model, every focal player plays with an opponent player
that is randomly chosen from adjacent sites (we use a
von Neumann neighborhood throughout, i.e., the four
adjacent sites). Given the strategies of the focal player
and the opponent player, the payoff for the focal player
is determined by the payoff matrix A. If the focal player
plays strategy i and the opponent plays strategy j, then
focal player receives payoff aij . If aij > 0, then the focal
player reproduces at rate aij and replaces a randomly
chosen adjacent individual with an offspring. If aij < 0,
then the focal player dies with rate |aij | and is replaced
by an offspring of a randomly chosen, adjacent individ-
ual. Note that the offspring will always play the same
strategy as their parent. The proposed spatial interac-
tions of players can be formally described as interacting
particle systems [11], the details are given in Appendix D.
The pseudo-code of the Monte Carlo simulation can be
found in Appendix B.

II.3. Ecological interactions in coordination games

For a two-player game, the sign of aij can be inter-
preted as the ecological impact of player with strategy
j on player with strategy i. Specifically, ecological in-
teractions can be defined as either intra-specific or inter-
specific. Intra-specific interactions are those that occur
between individuals of the same type, while interactions
that occur between two types are called inter-specific in-
teractions. Note that the intra-specific or inter-specific
interactions usually refer to the ecological interactions
between two species instead of two types. For example,
a scenario of mutual killers (such as for killing-proficient
Vibrio strains in [7]) can be modeled via a two-player
coordination game with positive diagonal elements and
negative off-diagonal elements, that correspond to posi-
tive intra-specific interactions and negative inter-specific
interactions. Here, we map the coordination games to

FIG. 1: Partitioning coordination games into inter- and
intra-specific interactions. The sign (+/-) of payoff val-
ues correspond to the positive (+) and negative (-) inter-
actions. For example, the mutual killing system (boxed
with dashed green line) has positive intra-specific inter-
actions aij > 0 if i = j, and negative inter-specific inter-
actions aij < 0 if i 6= j.

a broad range of intra-/inter-specific ecological interac-
tions, including but not limited to the mutual-killer sys-
tem. The classes of intra-/inter-specific ecological inter-
action can be characterized by the sign of payoff values.
There are four payoff values in the two-player payoff ma-
trix A, so there are 24 possible games besides coordina-
tion games (classified by the sign of payoff values, each
payoff value aij is either positive or negative), see Fig. A.1
in Appendix A. We summarize all distinct classes of intra-
/inter-specific ecological interaction, that can be mapped
to coordination games, in Fig. 1.

Using the proposed spatial coordination game-
theoretic framework, in the following, we investigate the
‘coarsening’ behavior of coordination games in a broad
range of ecological contexts. The key point of coordina-
tion games is that the intra-specific interactions are al-
ways preferred over inter-specific interactions, i.e., syner-
gistic effects of coordination games. Motivated by mutual
killer scenarios, we hypothesize that coarsening occurs for
any spatial ecological systems if strains have incentives
to coordinate with kin. We further analyze the require-
ments for a universal order-disorder transition.
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FIG. 2: Time lapse images of a two player coordination
game. The images show the spatial configuration (lattice
size L = 256) at t = 0, 2, 4, 6, 8, 10 with dt = 0.05. The
payoff matrix is given as A = [10,−5;−5, 10]. White
corresponds to player 1 and black is player 2. Starting
from well mixed initial condition, initial fraction of player
1 is 0.5, the two players separate into domains whose
characteristic length scales grow over time.

III. PHASE SEPARATION

To demonstrate coarsening behavior in a spatial,
stochastic coordination game, we first present results on
a game scenario of equal mutual killers, i.e. we model a
spatial game with a symmetric payoff matrix and nega-
tive off-diagonal elements. We observe rapid phase sep-
aration in Fig. 2, similar to the observation for mutual
killer biofilms presented in [7]. Domains of kin mem-
bers (players with the same strategy) form and grow over
time.

Next, we determine whether the phase separation un-
dergoes the same type of order-disorder transition as was
reported for mutual killers in [7]. We quantitatively ex-
amine the dynamics of phase separation as follows. We
first compute the Fourier transform of the phase sepa-

rated images obtained from simulation as shown in Fig. 2.
This transforms the image from real space into wave
space with wave number coordinates q = [qx, qy]T , pro-
viding the spatial frequencies in the x and y directions,
respectively. Next, we calculate the structure factor
S(q) by radially integrating the real part of the Fourier
transformed image (see Appendix B for more details)
and calculate the characteristic wavenumber as qm =∫
qS(q)dq/

∫
S(q)dq. As a hallmark for ‘Model A’ tran-

sitions, qm should scale as qm ∼ t−1/2, and S(qm) scales
as S(qm) ∼ t with time t. This also provides a time-
independent scaling relationship of S(qm) ∼ q−2

m . In-
deed, we find that the coordination game of mutual killers
undergoes phase separation that follows these Model A
hallmarks, see spatial structure analysis of mutual-killer
game in Fig. 3.

Next, we show that any the spatial coordination games
with symmetric double well potential (i.e., the potential
of mean-field replicator dynamics is in symmetric double-
well shape, see Sect. II) leads to ‘Model A’ coarsening.
To do so, we arbitrarily choose a payoff matrix from each
class of intra-/inter-specific interaction shown in Fig. 1
that is associated with a symmetric double well poten-
tial, i.e., (a11 − a21) = (a22 − a12) > 0. We perform a
spatial coordination game for each case and conduct the
spatial structural analysis on that process. We find that
for each type of game the system undergoes phase sepa-
ration. Moreover, the curves of the structural analysis of
all games collapse (see Fig. 3), and their temporal pro-
gression is consistent with ‘Model A’ order-disorder phase
separation process. In Appendix C, we present the gener-
alized coarsening behaviors in spatial coordination games
when the double-well potential functions are not perfectly
symmetric. We find that the coarsening behavior of co-
ordination games that with a small deviation from sym-
metric potential (low degree of asymmetry) still closely
follows the ‘Model A’ coarsening. In contrast, for the
coordination games with high degree asymmetric poten-
tial, we can still observe coarsening (clusters are formed),
however, the coarsening is not consistent with ’Model A’
order-disorder phase separation, see Appendix C for de-
tails.

IV. HYDRODYNAMIC LIMIT

In continuous space, phase separation processes that
follow ‘Model A’ order-disorder transition can be de-
scribed by a reaction–diffusion equation, the Allen-Cahn
equation [12]). To compare and connect this theory with
our game theoretic approach, we need to extend our
model to include cellular migration; players at neighbor-
ing sites will be allowed to exchange sites with a certain
probability. With this ingredient, we can derive the par-
tial differential equation (PDE) limits of spatial games
by assuming high exchange rates and scaling the lattice
appropriately, i.e., the hydrodynamic limit of an interact-
ing particle system. We consider a lattice with spacing ε
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FIG. 3: Structural analysis of simulated spatial coordination games. For both panels (top and bottom), there are
6 different colors, every color corresponds to one type of ecological species interactions in Fig. 1. We choose one
example payoff matrix from each class of ecological interactions, every data point is averaged over 50 realizations.
The payoff matrices are [10, 2; 5, 7] (red circle), [10,−3; 5, 2] (green square), [10,−7; 5,−2] (blue triangle), [2,−1;−3, 4]
(cyan triangle), [2,−7;−3,−2] (magenta triangle) and [−5,−7;−10,−2] (yellow triangle). The relationship between
qm and t is summarized in top panel, all the processes follow a universal t−1/2 trend. Similarly, S(qm) curves collapse
when S(qm) is plotted versus qm, all the games are undergoing the same coarsening process.

between the lattice sites, which provides a diffusion con-
stant of 4ε−2. This means that individual players perform
‘random walks’ at rate 4ε−2 on a lattice with spacing ε.
Since the lattice is fully occupied, individual players swap
with one of their nearest players (with distance ε) with
equal probability at rate 4ε−2. Let uε(t, x) and vε(t, x)
be the mean number of player 1 and player 2 at x at time
t, where vε(t, x) = 1 − uε(t, x). We can write the time
derivative of the population of player 1 as

Theorem 1. As ε→ 0, uε(t, x)→ u(t, x) is the solution
of

∂u

∂t
=

3

4
u(1− u)[(a12 − a22)(1− u)

+ (a11 − a21)u+
1

3
(a12 − a21)] + ∆u.

(4)

The proof of Theorem 1 can be found in Appendix E.
The diffusive term, ∆u, emerges as individual, adjacent
players perform ’random swaps’ (in analogy to random
walks but in fully occupied space). The central limit
theorem suggests that in the limit players perform Brow-
nian motion (by appropriate scaling). The reaction term
in Eq. 4 is a cubic polynomial. Let us define the potential
W as

W (u) = −
∫ u

0

f(s) ds, (5)

where f is the reaction term in Eq. 4. If W has two lo-
cal minima at u = 0 and u = 1, and a local maximum
at u = θ where θ ∈ (0, 1), then W is a double-well po-
tential (see Appendix E for the condition of W being a
double-well potential). The reaction-diffusion equation
in Theorem 1 takes the form of an Allen-Cahn equation
[12]. When Eq. 4 is defined on a two dimensional torus
T2 (periodic boundary condition), the evolution of Eq. 4
can be viewed as the L2-gradient flow of the Ginzburg-
Landau free energy functional [13, 14]

E [u] =

∫
T2

1

2
|∇u|2 +W (u) dx, (6)

i.e., ut = −∇L2(T2)E [u]. The free energy is non-
increasing in time (see Appendix E). Note that the free
energy E [u] contains two terms, where the gradient term
penalizes spatial variation (thus has a smoothing effect),
while the potential W (which has a double-well shape
with two local minima) drives the system to undergo
phase separation. This perspective is supported by the
linear stability analysis of a mixed-strategy homogeneous
steady state ū, see Appendix E.

V. DISCUSSION

Microorganisms commonly live in complex, spatially-
organized communities with different strains and taxa.
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Microbes have evolved an abundance of mechanisms to
interact within or across species . Those interactions
can enhance or diminish reproduction, and might be mu-
tual or unilateral. The variety in interaction patterns
combined with the interaction-induced structure forma-
tion of the communities pose challenges to understand of
the link between process and pattern. In this work, we
present a spatial coordination game model that utilizes a
game theoretica framework to evaluate the link between
possible combinations of interactions in a multi-species
community with emergent spatiotemporal patterns. This
approach enabled us to compare different interaction sce-
narios and find common characteristics and hallmarks of
emerging structures and assortment in microbial commu-
nities.

In doing so, we focus on coordination games where
members of the same species coordinate with kin and we
restrict interactions to nearest neighbors. We find spa-
tially explicit interactions can lead to ‘coarsening’ (i.e.,
phase separation) in the class of coordination games.
This means that phase separation is independent of the
’quality’ of the interaction (whether it promotes or dimin-
ishes reproduction of the focal player). It only requires
that intra-strain interactions are favored over inter-strain
interactions. This suggests that in an ecological con-
text microbes need to balance the investment into both,
intra-strain and inter-strain interactions, to govern the
population and community dynamics. This is particu-
larly important as upon phase separation the frequency
of contacts between self increases and the contacts be-
tween non-self decreases. The switch in social contexts
suggests a selection pressure both for functional traits
that contribute to initial phase separation and the for-
mation of clonal domains and for functional traits which

stabilize locally similar, microbial domains [15].
Further, our quantitative spatial analysis showed that

phase separation following spatial coordination games be-
long to the same type of an order-disorder transition - the
‘Model A’ universality class - if the payoff matrix corre-
sponds to a symmetric potential. In two-player games,
this case arises when the sum of the entries in each row
on the payoff matrix are equal. This universal behavior
has already been shown for the specific case of two-player
mutual killer scenarios with equal killing rates [7]. Based
on our results from coordination games, we find that the
universality class is more general. In addition to equally
competitive mutual-killing strains, we find that a broad
range of two-species ecological interactions can lead to
‘Model A’ coarsening provided that the interaction po-
tential is symmetric.

At the core of our findings is a derivation of a reaction-
diffusion equation that represents the hydrodynamic
limit of spatially distributed games. In doing so, we find
that the limiting reaction-diffusion equation associated
with the spatial game system is different from one ob-
tained by adding a diffusion term to the replicator dy-
namics (i.e. to the mean-field limit of the corresponding
non-spatial system). This observation recapitulates the
findings in [16] and reinforces the importance of assessing
how microscopic spatial interactions transform the emer-
gence of spatiotemporal patterns in biological systems.
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Appendix A: Derivation of mean-field limit

In the notion of chemical reactions [19], with 1 denoting a player with strategy 1 and 2 denoting a player with
strategy 2, then the possible combinations of players involved in a game (a focal player, an opponent and a randomly
selected third player that is not the opponent) in which there is a change in the state N1 are

focal︷︸︸︷
1 +

opponent︷︸︸︷
1 +

random︷︸︸︷
2

a
(−)
11−−−→

focal︷︸︸︷
2 +

opponent︷︸︸︷
1 +

random︷︸︸︷
2 ,

1 + 2 + 2
a
(−)
12−−−→ 2 + 2 + 2 ,

2 + 1 + 1
a
(−)
21−−−→ 1 + 1 + 1 ,

2 + 2 + 1
a
(−)
22−−−→ 1 + 2 + 1 ,

1 + 1 + 2
a
(+)
11−−−→ 1 + 1 + 1 ,

1 + 2 + 2
a
(+)
12−−−→ 1 + 2 + 1 ,

2 + 1 + 1
a
(+)
21−−−→ 2 + 1 + 2 ,

2 + 2 + 1
a
(+)
22−−−→ 2 + 2 + 2 ,

(A1)

the reaction rates a
(−)
ij and a

(+)
ij are shorthands of −aij1{aij<0} and aij1{aij>0}, where 1{E} is the indicator function;

1{E} = 1 if event E is true and 1{E} = 0 otherwise. Technically, for any given payoff matrix A ∈ R2×2, only four
reactions in Eq. A1 are realized. Next, we derive the mean-field limit of above stochastic games by following a similar
exercise in [10].

The transition rates of Eq. A1 are

QN1,N1+1 = a
(−)
21 N2

2
(
N1

2

)
(N − 1)2

+ a
(−)
22 N2

(
N2−1

1

)(
N1

1

)
(N − 1)2

+ a
(+)
11 N1

(
N1−1

1

)(
N2

1

)
(N − 1)2

+ a
(+)
12 N1

2
(
N2

2

)
(N − 1)2

+ a
(−)
21 N2

N1

(N − 1)2
+ a

(+)
12 N1

N2

(N − 1)2
,

QN1,N1−1 = a
(−)
12 N1

2
(
N2

2

)
(N − 1)2

+ a
(−)
11 N1

(
N1−1

1

)(
N2

1

)
(N − 1)2

+ a
(+)
22 N2

(
N1

1

)(
N2−1

1

)
(N − 1)2

+ a
(+)
21 N2

2
(
N1

2

)
(N − 1)2

+ a
(−)
12 N1

N2

(N − 1)2
+ a

(+)
21 N2

N1

(N − 1)2
,

(A2)

where Qn,n′ represents the transition rate from state n to state n′. Note that Qn,n′ = 0 if |n − n′| > 1. For each
equation in (A2), the first four terms on the right hand sides correspond to the cases in (A1), whereas the last two
terms correspond to the case where the randomly selected third player coincides with the opponent. The evolution of
state N1 is governed by the master equation, which has a gain-loss form [10, 22]

d

dt
P(N1, t) = QN1−1,N1

P(N1 − 1, t) +QN1+1,N1
P(N1 + 1, t)− (QN1,N1−1 +QN1,N1+1)P(N1, t). (A3)

Then, multiplying Eq. A3 with N1 and summing over N1, we obtain

N∑
N1=0

N1
d

dt
P(N1, t) =

N−1∑
N1=0

QN1,N1+1P(N1, t)−
N∑

N1=1

QN1,N1−1P(N1, t). (A4)

Thus, we have found for the average of the stochastic variable N1(t),

d

dt
〈N1(t)〉 = 〈QN1,N1+1〉 − 〈QN1,N1−1〉. (A5)
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Assume N,N1, N2 � 1, we note that

〈QN1,N1+1〉 ≈ a(−)
21 〈

N2
1N2

N2
〉+ a

(−)
22 〈

N2
2N1

N2
〉+ a

(+)
11 〈

N2
1N2

N2
〉+ a

(+)
12 〈

N1N
2
2

N2
〉+ a

(−)
21 〈

N1N2

N2
〉+ a

(+)
12 〈

N1N2

N2
〉,

〈QN1,N1−1〉 ≈ a(−)
12 〈

N2
2N1

N2
〉+ a

(−)
11 〈

N2
1N2

N2
〉+ a

(+)
22 〈

N2
2N1

N2
〉+ a

(+)
21 〈

N2N
2
1

N2
〉+ a

(−)
12 〈

N1N2

N2
〉+ a

(+)
21 〈

N1N2

N2
〉.

(A6)

Here, we define x = N1/N , and thus N2/N = 1− x. Plugging the expressions of averaged transition rates in Eq. A6
into Eq. A5, then we normalize the system via dividing both sides of Eq. A5 by N , we find

d

dt
〈x〉 = a

(−)
21 〈x2(1− x)〉+ a

(−)
22 〈x(1− x)2〉+ a

(+)
11 〈x2(1− x)〉+ a

(+)
12 〈x(1− x)2〉

− a(−)
12 〈x(1− x)2〉 − a(−)

11 〈x2(1− x)〉 − a(+)
22 〈x(1− x)2〉 − a(+)

21 〈x2(1− x)〉

+
a

(−)
21 〈x(1− x)〉+ a

(+)
12 〈x(1− x)〉

N
− a

(−)
12 〈x(1− x)〉+ a

(+)
21 〈x(1− x)〉

N
.

(A7)

Since N � 1, the last two terms in the order of 1/N are dropped, and Eq. A7 becomes

d

dt
〈x〉 = δ11〈x2(1− x)〉 − δ21〈x2(1− x)〉+ δ12〈x(1− x)2〉 − δ22〈x(1− x)2〉, (A8)

where δij = a
(+)
ij − a

(−)
ij . Note that a

(+)
ij − a

(−)
ij = aij(1{aij>0} + 1{aij<0}) = aij . In the large N limit, the normalized

system converges to the deterministic dynamics, i.e., the fluctuations around the average value 〈x〉 are negligible. We
thus omit the angular brackets in Eq. A8, and obtain

dx

dt
= x(1− x) [(a11 − a21)x+ (a12 − a22) (1− x)] , (A9)

which recovers the standard replicator dynamics.
The details of mapping from two-player games to intra-/inter-specific ecological interactions are shown in Fig. A.1.
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FIG. A.1: Mapping from two-player games to inter- and intra-specific interactions. The sign (+/-) of payoff values
correspond to the positive (+) and negative (-) interactions. There are two layers, the outer-layer represents the intra-
specific interactions and the inner-layer represents the inter-specific interactions. Some intra-/inter-specific ecological
interactions cannot be mapped to any coordination games (gray blocks), e.g., an example of anti-coordination game
with sign{A} = [−,+;−,+]. Some pairs of games are symmetric (blocks with same color), i.e., one can be transformed
to another via swapping player 1 and player 2. Hence, there are six distinct inter-/intra-specific ecological interactions
are mapped to coordination games that are shown in Fig. 1 in main text.
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Appendix B: Simulation of spatial games and spatial structure analysis

The simulation details of spatial games are summarized in Algorithm 1.

Algorithm 1: Simulation protocol of spatial games

Input : lattice size: N = L× L
a 2× 2 payoff matrix A with entries A[i, j] = aij
time step: dt
final time: tf
game generations: T = tf/dt
initial ratio of player 1: x0 = #{players 1}/N

Output : evolution of spatial configuration {ξt}
Initialization: ξ0 = [ξ(xij)]L×L with xij ∈ {1, 2, ..., L}2 and ξ(xij) ∈ {1, 2}
for t = 1 to T do

for n = 1 to N do
• Select a random focal player, xF

• Select a random opponent player, xO, at an adjacent site of xF

• Identify payoff α = A[ξ(xF ), ξ(xO)] and define rate of the game, λ = |α|
• compute the probability of the game given duration dt, β = λdt

if α > 0 then
Update ξ correspondingly: the focal player reproduces with probability β and replaces a randomly selected
adjacent individual with an offspring.

else if α < 0 then
Update ξ correspondingly: the focal player dies with probability β and is replaced by an offspring of a
randomly chosen, adjacent individual.

end for
Save configuration ξt

end for
return ξ0, ξ1, ..., ξT

The workflow of the image processing and analysis of structure factor is shown in Fig. B.1.

(a) Image of a phase separated lattice (b) Power spectrum of the image (c) Radially averaging

FIG. B.1: Workflow of the image processing and analysis. (a) Black-white image of a phase separated lattice, and (b)
the power spectrum of the Fourier transformed image in (a), displayed with logarithmic scaling. (c) Magnified cutout
of the center of the Fourier transformed image (b) illustrating the radial integration for calculating the structure
factor S(q). Intensities of pixels between concentric circles of q and q+ dq (red) are integrated and normalized by the
number of pixels in this ring. This procedure performed for the whole range of q-values provides the radial S(q) as a
function of distance q from the center of the Fourier transformed image. Note that the radial axis is displayed with a
logarithmic scale, and the image center corresponds to q = 0.
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Appendix C: Coarsening in spatial coordination games when the double-well potential is not perfectly
symmetric

In this section, we consider two classes of asymmetric double-well potential: symmetric double-well potential with
a small or large deviation. In the main text Fig. 3, we choose one example payoff matrix that with symmetric
double-well potential from each class of ecological interactions, every data point is averaged over 50 realizations. The
payoff matrices are [10, 2; 5, 7], [10,−3; 5, 2], [10,−7; 5,−2], [2,−1;−3, 4], [2,−7;−3,−2] and [−5,−7;−10,−2]. The
relative fitness values (or the intra-/inter-specific interaction payoff differences for two types of player) are same,
i.e., (a11 − a21) = (a22 − a12) = 5. For simplicity, we consider these payoff matrices are the baseline cases. Then, we
add a deviation factor η to control the degree of asymmetry. For example, adding η to symmetric potential payoff
matrix A = [10, 2; 5, 7] yields Aη = [10, 2; 5 − η, 7]. In our numerical experiments and coarsening analysis, we use
η = 0.5 for low degree of asymmetry and η = 3 for high degree of asymmetry.

The coarsening behavior of coordination games that with a small deviation from symmetric potential still closely
follows the ‘Model A’ coarsening, see Fig. C.1. For the coordination games with high degree of asymmetrical
potential, we can still observe coarsening behavior, black clusters are growing and white clusters are shrinking in
time, see Fig. C.2a, however, the coarsening is not consistent with ’Model A’ order-disorder phase separation, see
Fig. C.2b.

(a) Simulation of spatial coordination games with low degree asymmetric potential function.
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(b) Spatial structure analysis of spatial coordination games with low degree asymmetric potential function.

FIG. C.1: (a) Time lapse images of a two player coordination game with payoff matrix A = [10,−5;−5.5, 10]. The
images show the spatial configuration (lattice size L = 256) at t = 0, 2, 4, 6, 8, 10 with dt = 0.05. White corresponds
to player 1 and black is player 2. Starting from a well mixed initial condition, initial fraction of player 1 is 0.49
(unstable equilibrium of corresponding replicator equation), the two players separate into domains which grow over
time. (b) Structural analysis of simulated spatial coordination games that correspond to asymmetric potentials with
a small deviation (η = 0.5). For both panels (top and bottom), there are 6 different colors, every color corresponds
to one type of ecological species interactions in Fig. 1. We choose one example payoff matrix from each class of
ecological interactions, every data point is averaged over 50 realizations. The payoff matrices are [10, 2; 4.5, 7] (red
circle), [10,−3; 4.5, 2] (green square), [10,−7; 4.5,−2] (blue triangle), [2,−1;−3.5, 4] (cyan triangle), [2,−7;−3.5,−2]
(magenta triangle) and [−5,−7;−10.5,−2] (yellow triangle). The relationship between qm and t is summarized in left
panel, all the processes closely follow a universal t−1/2 trend. Similarly, S(qm) curves collapse when S(qm) is plotted
versus qm, all the games are undergoing the same coarsening process, see middle panel. The plot of potential function
shows the low degree of asymmetrical, see right panel.
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(a) Simulation of spatial coordination games with high degree asymmetric potential function.
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(b) Spatial structure analysis of spatial coordination games with high degree asymmetric potential function.

FIG. C.2: (a) Time lapse images of a two player coordination game with payoff matrix A = [10,−5;−8, 10]. The
images show the spatial configuration (lattice size L = 256) at t = 0, 2, 4, 6, 8, 10 with dt = 0.05. White corresponds
to player 1 and black is player 2. Starting from a well mixed initial condition, initial fraction of player 1 is 0.45
(unstable equilibrium of corresponding replicator equation), the two players separate into domains which grow over
time. (b) Structural analysis of simulated spatial coordination games that correspond to asymmetric potentials with
a large deviation (η = 3). For both panels (top and bottom), there are 6 different colors, every color corresponds
to one type of ecological species interactions in Fig. 1. We choose one example payoff matrix from each class of
ecological interactions, every data point is averaged over 50 realizations. The payoff matrices are [10, 2; 2, 7] (red cir-
cle), [10,−3; 2, 2] (green square), [10,−7; 2,−2] (blue triangle), [2,−1;−6, 4] (cyan triangle), [2,−7;−6,−2] (magenta
triangle) and [−5,−7;−13,−2] (yellow triangle). The relationship between qm and t is summarized in left panel, all
the processes closely follow a universal t−1/2 trend. Similarly, S(qm) curves collapse when S(qm) is plotted versus qm,
all the games are undergoing the same coarsening process, see middle panel. The plot of potential function shows the
high degree of asymmetrical, see right panel.
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Appendix D: Theoretical framework of spatial games, interacting particle systems

The spatial interactions of players can be modeled using the framework of interacting particle systems [11]. Here,
we consider a lattice with L sites per dimension with periodic boundary conditions. In two dimensions, this is a torus
in Z2 with N = L2 lattice sites. For each site x, it’s occupied by a player with either strategy 1 or strategy 2. So,
the state space of each site is A = {1, 2}, the configuration of system at time t is ξt : Z2 → A. Then, we define a
interaction neighborhood of site x:

I(x) =
⋃

y∈N (x)

N (y) , (D1)

where N (x) is 4 nearest neighbors of x: N (x) = {y ∈ Z2 : ‖y − x‖1 = 1}. Only one event is allowed at one time, and
the other sites remain (temporarily) as they were, i.e., a regular Markov jump process. We define cij(x, ξ) as the rate
at which site x at state i ∈ A flips to state j ∈ A. The flip rate cij(x, ξ) only depends on the configuration ξ through
the states of some interaction neighborhood I(x) of site x. We refer this flip event as the particle flip dynamics.
The focal player’s position x is selected at random, and the opponent’s position is chosen randomly from the nearest
neighborhood N (x). As we apply the game rules in Eq. A1, the third player’s position is randomly chosen from N (x)
as well. Note that the opponent in a game could be chosen as the third player with some nonnegligible probability 1

4
(in contrast to the mean field limit of non-spatial games). For convenience, we define the translation of a site x as

sk,`(x) = x+ (k, `) = (x1 + k, x2 + `). (D2)

We denote the positions of the focal player, the opponent and the randomly chosen third player as xF , xO and xR
respectively. We formulate the spatial dynamics by listing all the possible ‘local’ games that may result in a state flip
on site x.

First, we assume ξ(x) = 1 and the position of the focal player is x, then discuss following scenarios.

• The position of the focal player is x, i.e., xF = x, the opponent is from one of its nearest neighbor sites and it
has the same strategy as the focal player, i.e., ξ(xO) = ξ(xF ) = 1. Suppose the focal player loses a game and
gets replaced by a randomly chosen third player in N (x) (other than the opponent) with a different strategy,
i.e., ξ(xR) = 2. So, we require ξ(x) = 1, ξ(xO) = 1 and ξ(xR) = 2. With xF = x fixed, there are 12 feasible
combinations of positions {xF , xO, xR}. For every feasible combination, say {x, s1,0(x), s0,1(x)}, the reaction
(flip dynamics) is

focal, x︷︸︸︷
1 +

opponent, s1,0(x)︷︸︸︷
1 +

random, s0,1(x)︷︸︸︷
2

β
(−)
11−−−→

focal, x︷︸︸︷
2 +

opponent, s1,0(x)︷︸︸︷
1 +

random, s0,1(x)︷︸︸︷
2 ,

(D3)

where the flip rate β
(−)
11 is

β
(−)
11 =

probability of xO=s1,0(x)︷︸︸︷
1

4
×

rate of game︷︸︸︷
a

(−)
11 ×

probability of xR=s0,1(x)︷︸︸︷
1

4
.

(D4)

• The position of the focal player is x, i.e., xF = x, the opponent is from N (x) and it has a different strategy
from the focal player, i.e., ξ(xO) = 2. Suppose the focal player loses a game and gets replaced by a randomly
chosen third player (other than the opponent) with same strategy as the opponent, i.e., ξ(xR) = 2. So, we
require ξ(x) = 1, ξ(xO) = 2 and ξ(xR) = 2. With xF = x fixed, there are 12 feasible combinations of positions
{xF , xO, xR}. For every feasible combination, say {x, s1,0(x), s0,1(x)}, the reaction (flip dynamics) is

focal, x︷︸︸︷
1 +

opponent, s1,0(x)︷︸︸︷
2 +

random, s0,1(x)︷︸︸︷
2

β
(−)
12−−−→

focal, x︷︸︸︷
2 +

opponent, s1,0(x)︷︸︸︷
2 +

random, s0,1(x)︷︸︸︷
2 ,

(D5)

where the flip rate β
(−)
12 is

β
(−)
12 =

probability of xO=s1,0(x)︷︸︸︷
1

4
×

rate of game︷︸︸︷
a

(−)
12 ×

probability of xR=s0,1(x)︷︸︸︷
1

4
.

(D6)
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• The position of focal player is x, i.e., xF = x, the opponent is from N (x) and it has a different strategy from
the focal player, i.e., ξ(xO) = 2. Suppose the focal player loses a game and gets replaced by an offspring of
the opponent, i.e., xR = xO. So, we require ξ(x) = 1 and ξ(xO) = 2. With xF = x fixed, there are 4 feasible
combinations of positions {xF , xO, xR}. For every feasible combination, say {x, s1,0(x), s1,0(x)}, the reaction
(flip dynamics) is

focal, x︷︸︸︷
1 +

opponent, s1,0(x)︷︸︸︷
2 +

random, s1,0(x)︷︸︸︷
2

β
(−)
12−−−→

focal, x︷︸︸︷
2 +

opponent, s1,0(x)︷︸︸︷
2 +

random, s1,0(x)︷︸︸︷
2 ,

(D7)

where the flip rate β
(−)
12 is

β
(−)
12 =

probability of xO=s1,0(x)︷︸︸︷
1

4
×

rate of game︷︸︸︷
a

(−)
12 ×

probability of xR=s1,0(x)︷︸︸︷
1

4
.

(D8)

Now, we still assume ξ(x) = 1, and consider the case where the position of the focal player is sk,`(x), where
|k|+ |`| = 1, i.e., the focal player is one of the nearest neighbors of x. (Note that there are 4 possible positions of the
focal player.) For example, when (k, `) = (0, 1), the following three scenarios may result in a state flip on site x.

• The position of the focal player is s0,1(x), i.e., xF = s0,1(x), and the strategy of the focal player is 2, i.e.,
ξ(xF ) = 2. The opponent is one of its nearest neighbors (except x) and it has the same strategy as xF , i.e.,
ξ(xO) = 2. Suppose the focal player wins a game and reproduces and replaces the player at x (the third player),
i.e., xR = x. So, we require ξ(xF ) = 2, ξ(xO) = 2 and ξ(x) = 1. With xR = x and xF = s0,1(x) fixed, there
are 3 feasible combinations of positions {xF , xO, xR}. For every feasible combination, say {s0,1(x), s1,1(x), x},
the reaction (flip dynamics) is

focal, s0,1(x)︷︸︸︷
2 +

opponent, s1,1(x)︷︸︸︷
2 +

random, x︷︸︸︷
1

β
(+)
22−−−→

focal, s0,1(x)︷︸︸︷
2 +

opponent, s1,1(x)︷︸︸︷
2 +

random, x︷︸︸︷
2 ,

(D9)

where the flip rate β
(+)
22 is

β
(+)
22 =

probability of xO=s1,1(x)︷︸︸︷
1

4
×

rate of game︷︸︸︷
a

(+)
22 ×

probability of xR=x︷︸︸︷
1

4
.

(D10)

• The position of the focal player is s0,1(x), i.e., xF = s0,1(x), and the strategy of the focal player is 2, i.e.,
ξ(xF ) = 2. The opponent is one of its nearest neighbor sites (except x) and it has a different strategy as xF , i.e.,
ξ(xO) = 1. Suppose the focal player wins a game and reproduces and replaces the player at x (the third player),
i.e., xR = x. So, we require ξ(xF ) = 2, ξ(xO) = 1 and ξ(x) = 1. With xR = x and xF = s0,1(x) fixed, there
are 3 feasible combinations of positions {xF , xO, xR}. For every feasible combination, say {s0,1(x), s1,1(x), x},
the reaction (flip dynamics) is

focal, s0,1(x)︷︸︸︷
2 +

opponent, s1,1(x)︷︸︸︷
1 +

random, x︷︸︸︷
1

β
(+)
21−−−→

focal, s0,1(x)︷︸︸︷
2 +

opponent, s1,1(x)︷︸︸︷
1 +

random, x︷︸︸︷
2 ,

(D11)

where the flip rate β
(+)
21 is

β
(+)
21 =

probability of xO=s1,1(x)︷︸︸︷
1

4
×

rate of game︷︸︸︷
a

(+)
21 ×

probability of xR=x︷︸︸︷
1

4
.

(D12)

• The position of the focal player is s0,1(x), i.e., xF = s0,1(x), and the strategy of the focal player is 2, i.e.,
ξ(xF ) = 2. The position of the opponent is x, i.e., xO = x. Suppose the focal player wins a game and
reproduces and replaces player at x (the third player), i.e., xR = x. So, we require ξ(xF ) = 2, ξ(x) = 1. With
xO = xR = x and xF = s0,1(x) fixed, there is only 1 feasible combination of positions {s1,0(x), x, x}, and the
reaction (flip dynamics) is

focal, s0,1(x)︷︸︸︷
2 +

opponent, x︷︸︸︷
1 +

random, x︷︸︸︷
1

β
(+)
21−−−→

focal, s0,1(x)︷︸︸︷
2 +

opponent, x︷︸︸︷
2 +

random, x︷︸︸︷
2 ,

(D13)
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where the flip rate β
(+)
21 is

β
(+)
21 =

probability of xO=x︷︸︸︷
1

4
×

rate of game︷︸︸︷
a

(+)
21 ×

probability of xR=x︷︸︸︷
1

4
.

(D14)

Second, we assume ξ(x) = 2 and the position of focal player is x, and discuss the following scenarios that may
result in a state flip on site x. Note that the following scenarios are parallel with the ones that we discussed above
with ξ(x) = 1, except that states 1 and 2 are interchanged.

• The position of the focal player is x, i.e., xF = x, the opponent is from one of its nearest neighbor sites and it
has the same strategy as the focal player, i.e., ξ(xO) = ξ(xF ) = 2. Suppose the focal player loses a game and
gets replaced by a randomly chosen third player in N (x) (other than the opponent) with a different strategy,
i.e., ξ(xR) = 1. So, we require ξ(x) = 2, ξ(xO) = 2 and ξ(xR) = 1. With xF = x fixed, there are 12 feasible
combinations of positions {xF , xO, xR}. For every feasible combination, say {x, s1,0(x), s0,1(x)}, the reaction
(flip dynamics) is

focal, x︷︸︸︷
2 +

opponent, s1,0(x)︷︸︸︷
2 +

random, s0,1(x)︷︸︸︷
1

β
(−)
22−−−→

focal, x︷︸︸︷
1 +

opponent, s1,0(x)︷︸︸︷
2 +

random, s0,1(x)︷︸︸︷
1 ,

(D15)

where the flip rate β
(−)
22 is

β
(−)
22 =

probability of xO=s1,0(x)︷︸︸︷
1

4
×

rate of game︷︸︸︷
a

(−)
22 ×

probability of xR=s0,1(x)︷︸︸︷
1

4
.

(D16)

• The position of the focal player is x, i.e., xF = x, the opponent is from N (x) and it has a different strategy
from the focal player, i.e., ξ(xO) = 1. Suppose the focal player loses a game and gets replaced by a randomly
chosen third player (other than the opponent) with same strategy as the opponent, i.e., ξ(xR) = 1. So, we
require ξ(x) = 2, ξ(xO) = 1 and ξ(xR) = 1. With xF = x fixed, there are 12 feasible combinations of positions
{xF , xO, xR}. For every feasible combination, say {x, s1,0(x), s0,1(x)}, the reaction (flip dynamics) is

focal, x︷︸︸︷
2 +

opponent, s1,0(x)︷︸︸︷
1 +

random, s0,1(x)︷︸︸︷
1

β
(−)
21−−−→

focal, x︷︸︸︷
1 +

opponent, s1,0(x)︷︸︸︷
1 +

random, s0,1(x)︷︸︸︷
1 ,

(D17)

where the flip rate β
(−)
21 is

β
(−)
21 =

probability of xO=s1,0(x)︷︸︸︷
1

4
×

rate of game︷︸︸︷
a

(−)
21 ×

probability of xR=s0,1(x)︷︸︸︷
1

4
.

(D18)

• The position of focal player is x, i.e., xF = x, the opponent is from N (x) and it has a different strategy from
the focal player, i.e., ξ(xO) = 1. Suppose the focal player loses a game and gets replaced by an offspring of
the opponent, i.e., xR = xO. So, we require ξ(x) = 2 and ξ(xO) = 1. With xF = x fixed, there are 4 feasible
combinations of positions {xF , xO, xR}. For every feasible combination, say {x, s1,0(x), s1,0(x)}, the reaction
(flip dynamics) is

focal, x︷︸︸︷
2 +

opponent, s1,0(x)︷︸︸︷
1 +

random, s1,0(x)︷︸︸︷
1

β
(−)
21−−−→

focal, x︷︸︸︷
1 +

opponent, s1,0(x)︷︸︸︷
1 +

random, s1,0(x)︷︸︸︷
1 ,

(D19)

where the flip rate β
(−)
21 is

β
(−)
21 =

probability of xO=s1,0(x)︷︸︸︷
1

4
×

rate of game︷︸︸︷
a

(−)
21 ×

probability of xR=s1,0(x)︷︸︸︷
1

4
.

(D20)
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Next, we still assume ξ(x) = 2, and consider the case where the position of the focal player is sk,`(x), where
|k|+ |`| = 1, i.e., the focal player is one of the nearest neighbors of x. (Note that there are 4 possible positions of the
focal player.) For example, when (k, `) = (0, 1), the following three scenarios may result in a state flip on site x.

• The position of the focal player is s0,1(x), i.e., xF = s0,1(x), and the strategy of the focal player is 1, i.e.,
ξ(xF ) = 1. The opponent is one of its nearest neighbors (except x) and it has the same strategy as xF , i.e.,
ξ(xO) = 1. Suppose the focal player wins a game and reproduces and replaces the player at x (the third player),
i.e., xR = x. So, we require ξ(xF ) = 1, ξ(xO) = 1 and ξ(x) = 2. With xR = x and xF = s0,1(x) fixed, there
are 3 feasible combinations of positions {xF , xO, xR}. For every feasible combination, say {s0,1(x), s1,1(x), x},
the reaction (flip dynamics) is

focal, s0,1(x)︷︸︸︷
1 +

opponent, s1,1(x)︷︸︸︷
1 +

random, x︷︸︸︷
2

β
(+)
11−−−→

focal, s0,1(x)︷︸︸︷
1 +

opponent, s1,1(x)︷︸︸︷
1 +

random, x︷︸︸︷
1 ,

(D21)

where the flip rate β
(+)
11 is

β
(+)
11 =

probability of xO=s1,1(x)︷︸︸︷
1

4
×

rate of game︷︸︸︷
a

(+)
11 ×

probability of xR=x︷︸︸︷
1

4
.

(D22)

• The position of the focal player is s0,1(x), i.e., xF = s0,1(x), and the strategy of the focal player is 1, i.e.,
ξ(xF ) = 1. The opponent is one of its nearest neighbor sites (except x) and it has a different strategy as xF , i.e.,
ξ(xO) = 2. Suppose the focal player wins a game and reproduces and replaces the player at x (the third player),
i.e., xR = x. So, we require ξ(xF ) = 1, ξ(xO) = 2 and ξ(x) = 2. With xR = x and xF = s0,1(x) fixed, there
are 3 feasible combinations of positions {xF , xO, xR}. For every feasible combination, say {s0,1(x), s1,1(x), x},
the reaction (flip dynamics) is

focal, s0,1(x)︷︸︸︷
1 +

opponent, s1,1(x)︷︸︸︷
2 +

random, x︷︸︸︷
2

β
(+)
12−−−→

focal, s0,1(x)︷︸︸︷
1 +

opponent, s1,1(x)︷︸︸︷
2 +

random, x︷︸︸︷
1 ,

(D23)

where the flip rate β
(+)
12 is

β
(+)
12 =

probability of xO=s1,1(x)︷︸︸︷
1

4
×

rate of game︷︸︸︷
a

(+)
12 ×

probability of xR=x︷︸︸︷
1

4
.

(D24)

• The position of the focal player is s0,1(x), i.e., xF = s0,1(x), and the strategy of the focal player is 1, i.e.,
ξ(xF ) = 1. The position of the opponent is x, i.e., xO = x. Suppose the focal player wins a game and
reproduces and replaces player at x (the third player), i.e., xR = x. So, we require ξ(xF ) = 1, ξ(x) = 2. With
xO = xR = x and xF = s0,1(x) fixed, there is only 1 feasible combination of positions {s1,0(x), x, x}, and the
reaction (flip dynamics) is

focal, s0,1(x)︷︸︸︷
1 +

opponent, x︷︸︸︷
2 +

random, x︷︸︸︷
2

β
(+)
12−−−→

focal, s0,1(x)︷︸︸︷
1 +

opponent, x︷︸︸︷
1 +

random, x︷︸︸︷
1 ,

(D25)

where the flip rate β
(+)
12 is

β
(+)
12 =

probability of xO=x︷︸︸︷
1

4
×

rate of game︷︸︸︷
a

(+)
12 ×

probability of xR=x︷︸︸︷
1

4
.

(D26)

Appendix E: Hydrodynamic limit of spatial, stochastic games

In addition to the partial flip dynamics described above, we introduce another type of dynamics, namely the particle
exchange dynamics. Consider the scaled lattice Z2

ε = εZ2 = {εx : x ∈ Z2}. Assume the states at site x and y are
exchanged at rate κε−2, where ‖x− y‖1 = ε and κ is the diffusion constant. This is equivalent to say that the player
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at position x tries to swap with another nearest player (chosen at random with equal transition probability 1/4) at
rate 2κε−2. Specifically, the rate of x, y swapping, given x is the center and y is the neighbor, that is 1

2κε
−2, the same

swap event could also occur in the case of y is the center and x is the neighbor which also has rate 1
2κε
−2, so that the

total rate of x, y swapping is κε−2. The configuration of the scaled system at time t is denoted by ξεt : Z2
ε → A.

In an appropriately scaled limit, in which the lattice spacing goes to zero (ε → 0) and the speed of stirring goes
to infinity (ε−2 → ∞), the densities of the different types of particles converge to continuous densities which are
solutions of a reaction-diffusion equation [11, 20, 21]. The term ‘reaction’ corresponds to the particle flip dynamics
and the term ‘diffusion’ corresponds to the scaled particle exchange dynamics (fast stirring). In the next theorem,
we will derive the reaction-diffusion equation as the hydrodynamic limit of the interacting particle system, where the
particle exchange dynamics is as above, and the particle flip dynamics is described as in Appendix D.

Theorem 2. Consider an interacting particle system on the scaled lattice Z2
ε . Let the particle flip dynamics be given

in Eqs. D3 - D26, and the particle exchange dynamics are given by the symmetric nearest neighbor stirring with
scaled rate 2κε−2. Suppose ξε0(x), x ∈ Z2

ε , are independent (product measure) and let uε(t, x) = P(ξεt (x) = 1). If
uε(0, x) = g(x) is continuous then as ε→ 0, uε(t, x) converges to the hydrodynamic limit u(t, x), where u(t, x) is the
bounded solution of

∂u

∂t
= f(u) + κ∆u ,

u(x, 0) = g(x),
(E1)

where the reaction term f(u) is

f(u) =
3

4
u(1− u)

(
(a12 − a22)(1− u) + (a11 − a21)u+

1

3
(a12 − a21)

)
. (E2)

Proof. According to theory of hydrodynamic limits of interacting particle systems [11, 20, 21], the reaction term f(u)
is

f(u) =

flip from state 2 to state 1︷ ︸︸ ︷
〈c21(x, ξ)1{ξ(x)=2}〉u −

flip from state 1 to state 2︷ ︸︸ ︷
〈c12(x, ξ)1{ξ(x)=1}〉u ,

(E3)

where 〈.〉u denotes the expected value under product measure in which states 1 and 2 have densities u and 1 − u
respectively, i.e., P(ξ(x) = 1) = u and P(ξ(x) = 2) = 1−u. Recall the flip dynamics that are associated with ξ(x) = 2,
Eqs. D15 - D26, the first term 〈c21(x, ξ)1{ξ(x)=2}〉u becomes

〈c21(x, ξ)1{ξ(x)=2}〉u = (1− u)
(

12β
(−)
22 u(1− u) + 12β

(−)
21 u2 + 4β

(−)
21 u

)
+ 4(1− u)

(
3β

(+)
11 u2 + 3β

(+)
12 u(1− u) + β

(+)
12 u

)
= u(1− u)

(
3

4
a

(−)
22 (1− u) +

3

4
a

(−)
21 u+

1

4
a

(−)
21 +

3

4
a

(+)
11 u+

3

4
a

(+)
12 (1− u) +

1

4
a

(+)
12

)
= u(1− u)

(
3

4
(1− u)

(
a

(−)
22 + a

(+)
12

)
+

3

4
u
(
a

(+)
11 + a

(−)
21

)
+

1

4

(
a

(+)
12 + a

(−)
21

))
.

(E4)

Similarly, we let ξ(x) = 1, using Eqs. D3 - D14, the second term 〈c12(x, ξ)1{ξ(x)=1}〉u becomes

〈c12(x, ξ)1{ξ(x)=1}〉u = u
(

12β
(−)
11 u(1− u) + 12β

(−)
12 (1− u)2 + 4β

(−)
12 (1− u)

)
+ 4u

(
3β

(+)
22 (1− u)2 + 3β

(+)
21 u(1− u) + β

(+)
21 (1− u)

)
= u(1− u)

(
3

4
a

(−)
11 u+

3

4
a

(−)
12 (1− u) +

1

4
a

(−)
12 +

3

4
a

(+)
22 (1− u) +

3

4
a

(+)
21 u+

1

4
a

(+)
21

)
= u(1− u)

(
3

4
(1− u)

(
a

(+)
22 + a

(−)
12

)
+

3

4
u
(
a

(−)
11 + a

(+)
21

)
+

1

4

(
a

(−)
12 + a

(+)
21

))
.

(E5)

Plugging the Eqs. E4 - E5 into Eq. E3, we have

f(u) = u(1− u)

(
3

4
(1− u) (δ12 − δ22) +

3

4
u (δ11 − δ21) +

1

4
(δ12 − δ21)

)
, (E6)

where δij = a
(+)
ij − a

(−)
ij = aij .
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Remark 1. Comparing Eqs. E1–E2 with Eq. 2, we point out that the limiting reaction-diffusion equation associated
with the spatial game system is different from simply adding a diffusion term to the mean-field replicator dynamics.
This observation recapitulates the findings in [16]. This is because for each spatial game in dimension 2, there is a
1/4 probability that the random third player coincides with the opponent, which is not negligible. As a contast, without
spatial effects the probability would be 1/N (here N is the total number of players), which goes to zero as N →∞. In
addition, in dimension d, a similar derivation leads to a reaction term

f(u) =

(
2d− 1

2d

)
u(1− u)

(
(a12 − a22)(1− u) + (a11 − a21)u+

1

2d− 1
(a12 − a21)

)
, (E7)

which recovers the replicator dynamics when d is large,
(

2d−1
2d

)
→ 1 as d� 1.

On the other hand, we can modify the game rules such that the opponent player cannot be identified as the random
selected third player in Eqs. D3 - D26, i.e., we guarantee the random selected third player is not opponent, then the
hydrodynamics PDE takes the form of Eq. E1 with reaction term Eq. E7.

The reaction term f(u) in Eq. E2 is a cubic polynomial. Let us define the potential function W associated to f as

W (u) = −
∫ u

0

f(s) ds. (E8)

If W has two local minima at u = 0 and u = 1, and a local maximum at u = θ where θ ∈ (0, 1), then we refer to
W as a double-well potential. In the following proposition, we give a sufficient condition for W to be a double-well
potential.

Proposition E.1. For the spatial game in dimension d, suppose the 2× 2 payoff matrix A satisfies

(a12 − a22) +

(
1

2d− 1

)
(a12 − a21) < 0,

(a11 − a21) +

(
1

2d− 1

)
(a12 − a21) > 0.

(E9)

Then, the potential function W (u) in Eq. E8 is a double-well potential.

Proof. To ensure the potential function W has a double-well shape, we restrict f(u) = 0 when u = 0, 1 and θ, where
θ ∈ (0, 1), and f ′(0) < 0, f ′(1) < 0, f ′(θ) > 0. Note that f(u) = 0 whenever u = 0, 1 given the form of f(u) in Eq. E7.
Define a linear function h on [0, 1] as

h(u) = (a12 − a22)(1− u) + (a11 − a21)u+

(
1

2d− 1

)
(a12 − a21),

so that f(u) = 2d−1
2d u(1− u)h(u). To have f(θ) = 0 with θ ∈ (0, 1), we require h(θ) = 0 for some θ ∈ (0, 1). Since h is

linear, we need sign{h(0)} 6= sign{h(1)} to ensure the existence of such a θ, moreover, we need h(0) < 0 and h(1) > 0
so that f ′(θ) > 0. In doing so, we obtain Eq. E9.

Decay of free energy. The reaction-diffusion equation in Theorem 2 takes the form of an Allen-Cahn equation [12].
When Eq. E1 is defined on a two dimensional torus T2, the evolution of Eq. E1 can be viewed as the L2-gradient flow
of the Ginzburg-Landau free energy functional [13, 14]

E [u] =

∫
T2

1

2
|∇u|2 +W (u) dx, (E10)

i.e., ut = −∇L2(T2)E [u]. Taking the derivative of E [u] with respect to time yields

d

dt
E [u] =

∫
T2

∇u · ∇ut − f(u)ut dx

(integration by parts) =

∫
T2

∇ · (ut∇u)− ut∆u− f(u)ut dx

= −
∫
T2

ut(f(u) + ∆u) dx+

∫
T2

∇ · (ut∇u) dx

(divergence theorem) = −
∫
T2

|ut|2 dx+

∫
∂T2

(ut∇u) · ~ndS

(periodic boundary condition) = −
∫
T2

|ut|2 dx

≤ 0.

(E11)
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Therefore, the free energy is non-increasing in time. Note that the free energy E [u] contains two terms, where
the gradient term penalizes spatial variation (thus has a smoothing effect), whereas the potential W (which has a
double-well shape with two local minima) drives the system to undergo phase separation.

Linear stability analysis. For Eq. E1, note that the constant solution u(x, t) ≡ ū is a steady state for any ū ∈ (0, 1),
and it corresponds to a mixed strategy that is spatially homogeneous. Now let us consider a solution that has a
small fluctuation around ū, that is, u(x, t) = ū+ δu(x, t), where |δu| � 1. Substituting this solution to the evolution
equation Eq. E1 and omitting the terms of order (δu)2 or higher, we find that an arbitrary tiny perturbation δu
evolves as follows (a linear evolution equation):

∂δu

∂t
= f ′(ū)δu+ κ∆δu.

The general solution of a constant-coefficient linear evolution equation can be written as δu(x, t) = veσteiqx, where
v is some nonzero constant vector, σ is growth rate and q = [kπ/`, jπ/`]T is the wave vector (qx is a dot product).
Substituting δu(x, t) = veσteiqx into the above linear evolution equation and canceling common terms from both
sides, we find that

σ(q) = f ′(ū)− κ|q|2.

The growth rate σ is then determined as a function of wave vector. Those associated wavelengths with positive
growth rates are unstable, and those with negative growth rates are stable; the parameters of the system determine
which, if any, of the wavelengths fall into each category. The small fluctuation term could lead to phase diverge
from homogeneous equilibrium if the largest growth rate is positive, i.e., max σ(q) > 0. The largest growth rate
corresponds to the wave vector q = [π/`, π/`], so that σmax = f ′(ū)− 2κ(π/`)2, where the second term indicates that
diffusion is stabilizing the phase from diverging.
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